Study of the J/Ψ production using a TGEANT simulation embedded with the 2015 setup

Programs used in the Monte-Carlo chain

- Pythia 8.186
- **TGEANT** (*private branch*). <u>Few modifications were introduced</u>:
 - Inclusion of the detector parameters for the 2015 setup
 - Correction of a bug in the TGEANT-Pythia8 interface (aborted J/Ψ generations were being stored by TGEANT and, thereafter, causing coral crashes)
 - Correction of a bug in the event-by-event calculation of $p_x(\pi^-)$, $p_y(\pi^-)$ and $p_z(\pi^-)$
- **CORAL 14146** → version of the 2015 production
- Phast.7.151

Settings of Pythia8 for the J/Ψ generation: production processes

- Only 3S1 (J/Ψ and Ψ ') charmonium states were simulated:
 - Charmonium:qqbar2ccbar(3S1)[3S1(8)]g = on,on \rightarrow
 - Charmonium:qqbar2ccbar(3S1)[1S0(8)]g = on,on
 - Charmonium:qqbar2ccbar(3S1)[3PJ(8)]g = on,on
 - Charmonium:gg2ccbar(3S1)[3S1(1)]g = on,on
 - Charmonium:gg2ccbar(3S1)[3S1(8)]g = on,on
 - Charmonium:gg2ccbar(3S1)[1S0(8)]g = on,on
 - Charmonium:gg2ccbar(3S1)[3PJ(8)]g = on,on
 - Charmonium:qg2ccbar(3S1)[3S1(8)]q = on,on
 - Charmonium:qg2ccbar(3S1)[1S0(8)]q = on,on
 - Charmonium:qg2ccbar(3S1)[3PJ(8)]q = on,on

- → colour octet model
- \rightarrow colour octet model
- \rightarrow colour octet model
- → colour singlet model
- → colour octet model
- → colour octet model
- → colour octet model
- \rightarrow colour octet model
- → colour octet model
- → colour octet model

Settings of Pythia8 for the J/Ψ generation: PDFs and Phase-Space cuts

- <u>Beam and Target Parameters:</u>
 - Beams:frameType = $3 \rightarrow$ implies the specification of px, py and pz
 - Beams:idA = -211 (π ⁻), Beams:pxA = 0.0, Beams:pyA = 0.0, Beams:pzA = 190.0 (the momentum components are recalculated by TGEANT for every event)
 - Beams:idB = 2212 (*p*), Beams:pxB = 0.0, Beams:pyB = 0.0, Beams:pzB = 0.0
- <u>Beam and Target PDFs</u> (internal options from Pythia8):
 - π^- : GRV 92 L (PDF:piSet=1)
 - P : NNPDF2.3 QCD+QED NNLO alpha_S(M, Z) = 0.119 (PDF:pSet=16)
- <u>Phase-Space cuts</u>:
 - − PhaseSpace:pTHatMin = 0.5 → minimum p_T for the hard process
 - PhaseSpace:pTHatMax = 10
 - − PhaseSpace:pTHatMinDiverge = 0.5 → extra p_T cut to avoid divergences

Settings of Pythia8 for the J/Ψ **generation:** k_{T} **description**

- The primordial k_T of the hard-scattering partons is parametrised as follows *(tuning from Yu Shiang)*:
 - BeamRemnants:primordialKT = on
 - − BeamRemnants:primordialKTsoft = 0.9 → width of sigma_soft assigned as primordial k_T to initiators in the soft interaction limit
 - − BeamRemnants:primordialKThard = 1.8 → width of sigma_hard assigned as primordial k_T to initiators in the hard interaction limit
 - BeamRemnants:halfScaleForKT = 1.5 → the scale <u>Q_half</u> defining the half-way point between hard and soft interactions.

sigma = (sigma_soft * Q_half + sigma_hard * Q) / (Q_half + Q) * m / (m_half + m)

The k_T 's are selected according to Gaussian distributions in p_x and p_y (*Q* is the hard-process renormalization scale for the hardest process and the p_T scale for subsequent interactions)

Settings of Pythia8 for the J/\Psi generation: Parton Showers & J/ Ψ decay

- <u>Multi-parton interactions are allowed but the initial-state and final-state radiations</u> <u>are turned off</u>:
 - PartonLevel:ISR = off
 - PartonLevel:FSR = off
- The J/ Ψ 's are forced to decay to dimuons:
 - − 443:onMode = off → turn off all J/Ψ decays
 - − 443:onIfAny = 13 -13 \rightarrow turn on only the decays to $\mu^+\mu^-$

Selection cuts after the J/ Ψ reconstruction

Events generated with Pythia8	34000
Events simulated by TGEANT	33898
Simulated events containing J/Ψ's	32447
Simulated J/Ψ's in acceptance	15167 (acc = 47%)
Reconstructed dimuons (with PID)	13566 ($\varepsilon_{\mu + \mu -} = 89\%$)
Dimuons sharing the same vertex	4344 ($\varepsilon_{_{J/\Psi}} = 29\%$)
$Z_{vert} \epsilon$]-295, -240[$Z_{vert} \epsilon$]-220, -165[1116
$Z_{first} < 300 \text{ cm}$ & $Z_{last} > 1500 \text{ cm}$	1082
$ T_{\mu^+} - T_{\mu^-} < 5 \text{ ns}$	1081
Trigger: LAST-LAST, LAST-Outer, LAST-Middle	902
$\chi^2_{\mu}/ndf < 10$	902
$x_1 \in [0, 1[$ & $x_2 \in [0, 1[$ & $x_F \in [-1, 1[$	900
R _{vertex} < 1.9 cm	694
pT _{dimuon} e]0.5, 5[GeV/c	597
$P_{\mu} > 7 \text{ GeV/c}$	596
$P_{\mu^{+}} < (180 \times p_{\mu^{-}}) & & \theta_{\mu^{+}} \in]0.2 \times \theta_{\mu^{-}}, 5 \times \theta_{\mu^{-}}[$	557

Vertex distribution and resolution: no cuts applied

Only J/ Ψ 's from ammonia

50

<u>23% of the reconstructed J/ Ψ "s,</u> generated in the ammonia cells, are reconstructed outside the target volume

Production processes contributing to the reconstructed J/\Psi's *(using the colour octet model)*

Kinematic distributions of the generated J/Ψ **'s:** after reconstruction

J/ Ψ 's produced by $q\overline{q}$, gg and qg processes (*all cuts but* Z_{vertex} *are applied*):

Angular distributions after the dimuon reconstruction

Kinematic distributions of the generated J/Ψ **'s:** after reconstruction

