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ABsTRACT: Muon radiographic methods can be used to explore inaccessible volumes profiting
of the property of muons to penetrate thick materials. An extension of the muon radiographic
methods, the muon scattering tomography, was proposed for the first time in 2003 and it is based
on the measurement of the multiple Coulomb scattering of muons crossing the volume under
investigation. In this talk, the principles of tomographic image reconstruction are first outlined and
then the experimental setup and the most adequate detectors are described. A review of the possible
applications of this technique is reported, with specific reference to security in transports and
monitoring of industrial processes. The technique can also be used to provide precise measurements
of the properties of various materials. The experimental challenge related to this activity is
discussed.
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with matter; Pattern recognition, cluster finding, calibration and fitting methods
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1 Introduction

The highly penetrative properties of cosmic ray muons can be used to explore inaccessible volumes.
The first application of cosmic muons was obtained in 1955 by E.P. George [1] to determine the
depth of rock above an underground tunnel. A spectacular application was obtained by Nobel
Prize L.W. Alvarez inspecting the Chefren pyramid to search for hollow vaults [2]. More recently,
volcanoes inspection was proposed and performed [3]. In all such cases, cosmic muons are treated
as ordinary x-rays in usual radiography by looking at their absorption.

A completely different approach to obtain cosmic muon tomography is the muon scattering
tomography (MST). The technique, proposed in 2003 [4], is based on multiple Coulomb scattering
(MCS). When charged particles, as cosmic muons, cross a target volume they are deflected (and
decelerated). The deviation angle, projected on a plane, has a distribution which is basically
Gaussian for particles of the same momentum, with mean zero and a r.m.s. which depends on the
inverse of the muon momentum p and on the material thickness X and radiation length Xj:

13.6 M X
o~ M,/—. (1.1)
pc Xo

Measuring the deviation angles allows to reconstruct information about the radiation length (or
its inverse, the linear scattering density 4 = 1/Xj) of an unknown material. It must be noted that
the momentum of an individual particle is in general unknown but it can be substituted by a fixed
value computed from the average value < 1/p? > of the 1/p? distribution.



2 Reconstruction techniques

The MST technique requires two detectors to measure position and direction of the muon before
and after it enters in the volume to be inspected.

2.1 Basic technique

The simplest reconstruction method is based on the single scattering approximation (SSA) which
assumes that the scattering of any individual muon is concentrated in a single point. This point
coincides with the point of closest approach (POCA) of the straight lines (in space) measured by the
two detectors. A map of the material linear scattering density (LSD) can be obtained by assigning
to the POCA reconstructed for the i muon a weight proportional to Aé?iz where Af; is the measured
projected scattering angle. The method is computationally very fast and it works quite well for
cases with an object having a much higher LSD than the rest of the volume, but it tends to fail in
presence of several scattering centers.

2.2 Tomographic technique

A more powerful but complex method is based on maximum likelihood expectation maximization
(MLEM) algorithm. For a particle i with a length L; of the crossing path inside the target volume
filled by a homogeneous material of LSD A, the average expected squared deviation can be deduced

13.6 MeV'\?
o? = (M) Lid. 2.1
pc

If the material is not homogeneous, the target volume can be divided in NV cubic units, called voxels,

fromeq. (1.1) as

where the LSD is assumed to be constant, and then in eq. (2.1) the product L; A becomes Xy L Ay.
With a data sample of M muons we have then N unknowns {A;; k = 1...N} and M measurements
{AQ?; i =1...M}.! Given the Gaussian probability density function

762
L
p)

1
P, = P(Ab; | i) = ei 2.2)
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with an iterative optimization algorithm applied to a maximum log-likelihood functional, the system

can reach reasonably approximate values of A [5-7].
A list of other algorithms, feasibility studies and other simulations is given in refs. [8§—18].

3 Experimental setup

3.1 The detectors

The detectors for MCS tomography must fulfil the following requirements: (i) to cover large areas
(then the detectors must be reliable and cost effective); (i7) to ensure good tracking performance; (iii)
to provide good angular resolution: A8 < O(10 mrad); (iv) to produce two times bi-dimensional
measurements (at least one of them should have a good angular resolution for A6 measurement);

'A complete treatment of the measurements should also include the muon displacement, defined as the distance
between the exit point of the particle from the target volume and the trajectory of the incoming muon.



(v) to guarantee stability in time and position. In addition, if possible, the detector should provide
information about the individual muon momentum.

Following these requirements, several detectors have been proposed and used to realise proto-
type systems for muon tomography. Among the gaseous detectors, drift chambers with different cell
structure, gas electron multiplier’s (GEM) and resistive plate chambers (RPC) should be mentioned.
In addition, detectors based on plastic scintillators with multi-anode or silicon photomultiplier
readout (MaPM or SiPM) have been considered. The scintillation-light collection can be direct or
mediated by wave-length shifting (WLS) optical fibers. Fast devices as RPC or SiPM can measure
with good precision the time of flight required for the muon to cross the distance between the two
detectors, allowing to provide a momentum measurement at least for the low-energy particles. A
list of possible detectors for muon tomography is given in refs. [19-39].

3.2 An example

At the INFN National Laboratory of Legnaro (Padova) a demonstrator for the study of muon
tomography has been assembled using two spare muon chambers produced for the CMS experiment
at CERN-LHC [40] and installed in the barrel sector of the detector. Two 300 cm X 250 cm drift
chambers, used to track the muons, are placed horizontally with a vertical gap of about 160 cm, as
shown in figure 1. The volume enclosed by the two detectors is more than 11 m?, one of the largest
test volumes for MCS tomography of the world.

Figure 1. The muon tomography station at the INFN Legnaro Laboratories.

4 Applications

The activity based on possible applications of cosmic muons is now growing worldwide and the
related literature is becoming relevant. For this reason it is difficult to produce an extensive review
of all the activities on different applicative sectors, but at least the major items are considered in the
following.



Several applications are based on the measurement of cosmic muon flux absorption. Namely:
(i) geological survey (vulcanos, mines, CO, repositories) [41-51]; (ii) archaeological inspec-
tions [52, 53]; (@ii) survey of nuclear plants [54-56]. They will not be discussed here since some
of them are described elsewhere [57].

Many other possibilities are deriving from the implementation of systems based on MCS
tomography.

4.1 Transport control

The first application proposed by the Los Alamos group to use the MCS tomography was addressed
to detect heavy metals in containers and trucks, to contrast nuclear contraband. A portal based
on drift tube technology is in operation in Freeport (Bahamas) [20]. Other portals are under
construction (e.g. Catania, Italy [25, 27]). A crucial point for these controls is the capability to
provide a reliable response, once a container is inserted in the portal, in a very short time, not to
delay the transport chain.

4.2 Industrial applications

An application that can be classified both as transport control or industrial application regards the
detection of the so-called orphan sources in scrap metal. All over the world, radioactive sources
are sometimes present in scrap metal transported to foundries for steel recycling. In some cases,
when the radiation source is well shielded by its heavy metal transportation cask and by the scrap
metal itself, it is not detected by radiation portals, usually installed at the foundry entrance, and is
melt, with serious consequences for the plant and public [58]. An European project [59] was aimed
at studying and designing a portal capable to detect the heavy metal shield of the radiation source
in a short ( 5 min) exposition time. In conjunction with radiation detectors, this system will be
capable to intercept every source without slowing the metal production chain. The program was
successfully completed: a situation similar to the industrial case was reproduced in the Legnaro
demonstrator by hiding a lead volume, corresponding to a shield cask, into a = 1 cubic meter box
of scrap metal [7]. In addition, the real situation of a full scale portal for truck inspection at a
foundry was simulated. The false positive rate as a function of the exposition time, for different lead
volumes is shown in figure 2. For a 2 liter volume six minutes are sufficient to avoid false alarms
with 100% finding efficiency [58, 59]. To reach such a low rates of false alarms it is important to
filter out noise originating from several sources as described in ref. [7].

Another industrial application concerns the study of the capability of MST for imaging of
different components present in the blast furnace burden (coke, burden and reduced metal), during
operation. An European project, [61] devoted to this investigation, is going to release the final
results of its activity. Preliminary unpublished results based on the simulation of ideal detectors
surrounding the whole furnace, have shown the potentiality of the technology to map the internal
distribution of the material. Final results will be released next year. Additional use of cosmic-ray
muons for monitoring blast furnaces can be found in refs. [62-64].

A study for MST application to nuclear power industry is also available [65].
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Figure 2. Simulated image of a portal for truck inspection at a foundry (left); false positive rate as a function
of the exposition time, for different lead volumes (right). These figures are taken from ref. [59].

4.3 Nuclear waste/spent nuclear fuel control

A very promising field, with a lot of activities connected [18, 66—72] is related to spent nuclear fuel
control and in particular the inspection of dry storage containers (DCS).? At present no validated
methods to verify the content without opening the storage containers exist. The investigation
profiting of cosmic muons may constitute a very effective method to detect or exclude the presence
of spent fuel bundles. In the particular case of DCS, the approach to explore their content can profit
both of the absorption/transmission of muons crossing the container, and of the MCS. Information
about the position and direction of the particles entering in the container can be obtained by placing
cylindrical detectors around its lateral surface. The detectors measure also position and direction
of the muons that exit crossing the lateral surface of the container as sketched in figure 3.

" Detector Lateral
view

layer1,2

Top view
M : 3 i

Detector
layer 1,2

Figure 3. Muon Tomography Station sketch (not in scale). Top and lateral view.

Simulation results about the detection of a missing bar in a CASTOR®?3 container are shown
in figure 4. On the left there is the reconstructed CASTOR® density average along vertical axis,
obtained using absorbed muons information. The right image shows the same simulated data

2There are several types of DCS, in general 5 m high cylinders of different diameters and different materials [60].
3http://www.gns.de/language=en/24429/castor.


http://www.gns.de/language=en/24429/castor

analysed using muons passing through the container. The missing bar is clearly visible with both
techniques.#

Figure 4. Top view of the reconstructed castor density, averaged along vertical axis, in a simulated castor
container with one missing bar, obtained using absorbed muons information (left). The density obtained
using muons passing through the container (right). Both panels correspond to one hour of data taking of
cosmic muons.

4.4 LSD precision measurements

To make precision measurements with MCS tomography that is to determine L.SD (or the ratio

= A/p, where p is the mass density) of a material with a small uncertainty is not a trivial
task. Among several difficulties to provide quantitative measurements it must be mentioned that
the choice of the parameter < 1/p? > in absence of momentum measurement implies a careful
calibration. In addition, when crossing thick materials, the muon spectrum is modified by the
absorption of low energy muons with the consequent appearance of non-linearity effects in the LSD
evaluation [73].

Despite the difficulties, it has been demonstrated that MST can be used to measure the properties
of various materials [74] extracted from an experimental blast furnace during activities related to the
above mentioned Mu-Blast project [61]. The measurements produced at the Legnaro Laboratory
include light materials (coke) and iron oxides with increasing degrees of reduction. By adopting
experimental procedures for calibration, noise reduction, background subtraction and by controlling
the MLEM algorithm convergence, an absolute precision of 10% on the measurements of R has
been achieved. In figure 5 a good correspondence of measured R with the values calculated on the
basis of the chemical composition of each material is shown. The precision expected by considering
the sources of systematic uncertainties is between 7 and 10%, while the measures show a deviation
of 3.1% with an r.m.s. of 4.8%.

4This results have been obtained in collaboration with P. Checchia, A. Rigoni Garola, S. Vanini and G. Zumerle, from
INFN and P. Peerani from JRC-ITU.
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Figure 5. LSD and R as a function of the effective bulk density for several samples (left panel). R as a
function of the predicted value, Ry, ¢4, for the same samples (right panel). This figure is taken from [74].

4.5 Monitoring of building stability

An interesting application of cosmic muons, although not involving tomographic or radiographic
technologies, is related to stability monitoring in civil engineering. Tracking detectors sensitive
to cosmic muons, may be devoted to the static monitoring of buildings, in particular of the ones,
as historical buildings, with severe conservation constraints and deformation phenomena with long
scale time evolution (months or years). A specific measurement system has been designed to
monitor the wooden vault of “Palazzo della Loggia" in Brescia [75]: a target fiber scintillator
detector with SiPM readout is fixed at the roof whose deformation should be monitored, and a
muon telescope, based on the same technology, is located in the fixed part of the building as shown
in figure 6. Cosmic muons traversing both detectors monitor continuously the displacement of
the target detector relative to the muon telescope. From simulation, the expected precision in the
described conditions should be of the order of a few millimeters with an observation time of a
couple of weeks. The precision should be sufficient to follow seasonal deformation and, more so,
to detect general deformation trends.

5 Final remarks

The use of cosmic muons for applicative purposes provides a large group of possibilities and the
field is evolving so quickly with new ideas and new proposals to require a dedicated event to
illustrate the status all items. Any related activity constitutes an important technological transfer
from high energy physics and particle-detector sectors to the civil society. It has to be pointed
out that there are several technological, computational and analysis challenges that should increase
the interest of high energy physicists to participate. In this field, resources arrive mainly from
funding subjects alternative with respect to “standard" research agencies: this requires an effort
to prepare and submit appropriate proposals for projects, and to involve potential partners out of
research/academic network with additional benefits for the dissemination of HEP competence.
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